

A Novel Beam Injection Scheme in the Fermilab Booster for Intensity Upgrade

Chandra Bhat

Fermi National Accelerator Laboratory

BE/ABP ACCELERATOR PHYSICS FORUM CERN, Geneva, Switzerland September 15, 2015

Fermilab, US Premier Particle Physics Laboratory

Booster: 0.4-8 GeV Accelerator

Recycler: 8 GeV Permanent Magnet Storage Ring

> Main Injector: 8 -120 GeV Accelerator

Sept. 15 2015

Fermilab

Chandra Bhat, Accel. Phys. Forum@ CERN

Record 1.25x10¹⁷ protons/hour on July 24, 2015 (previous record 1.1x10¹⁷ protons/hour)

Upgrade Path for Power on Target

Parameter	PIP Completed	PIP-II
Injection Energy (KE) (GeV)	0.4	0.8
Extraction Energy KE (GeV)	8	8
Injection Intensity (p/pulse)	4.52E12	6.63E12
Extraction Intensity (p/pulse)	4.3E12	6.44E12
Bunch Removed	3	3
Efficiency (%)	95	97
Booster repetition rate (Hz)	15	20
Booster Beam Power at Exit (kW)	94	184
MI batches	12 per1.33 sec	12 per 1.2 sec
NOvA beam power (kW)	700	1200
Rate availability for other users (Hz)	5	8
Booster flux capability (protons/hr)	~ 2.3E17	~ 3.5E17
Laslett Tune shift at Injection	≈- 0.227	≈ -0.263
Longitudinal energy spread	< 6 MeV	< 6 MeV
Transverse emittances (p-mm-mrad)	< 14	18
Booster uptime	> 85%	> 85%

🛟 Fermilab

Are there innovative ways to increase the Booster beam before the PIP-II era?

Introduction
Beam Simulations
Experimental Demonstrations
Beam studies and Findings
Summary and Future Plans

Layout of the Fermilab Booster

Booster Lattice Parameter

Circumference	2π x 74.47 meters
Injection energy	400 Mev (kinetic)
Extraction energy	8 Gev (kinetic)
Cycle time	1/15 sec
Harmonic number, h	
Transition gamma	5.45
Injection Frequency	37.77 Mhz
Extraction Frequency	52.81 Mhz
Maximaum RF voltage	0.86 MV
Longitudinal emittance	0.25 eV sec
Horizontal β max	
Vertical β max	20.5 meters
Maximum dispersion	3.2 meters
Tune $vx = vy$	6.7
Transverse emittance(norm	ailized)12π mm rad
Bend magnet length	2.9 meters
Standard cell length	19.76 meters
Bend magnets per cell	4
Bend magnets total	96
Typical bunch intensity	3 x 10e10
Phase advance per cell	96 degs
Cell typeFO	FDOOD (DOODFOF)

Beam Injection into the Booster

2. Once beam injected, ORBMP is ramped back so that the circulating beam is sufficiently away from the stripping foil.

🛟 Fermilab

Mimic **Operational** Beam: injection at ~35us before BDOT=0

Issues: A limited time for Beam Capture. RF manipulations are non-adiabatic at capture ← ~50% emittance dilution, ~10% beam loss

‡Fermilab

Beam in 2015 (now) GxSE: Snapshot Plo 01-OCT-10 13:34 Beam Loss ≈15% 1000 After removal of two bunches @ inj. ≈10% ≈113 4.5 250 4.5 Y= B:CHG0 E12 ≈9% B:IRMCHG E12 B:RFSUM KV/T B:CHGØ E12 ≈9% ≈8% ≈8% BEAM ≈8% KHz) KHz) ≈8% 1.5 <1% .01 .02 .03 .04 <1% AIT FOR EVENT Seconds Trig = EVENT 17 engineering units .01 .02 .03 **Observations:**

Beam in 2010

- Beam loss as a function of beam intensity 1.
- 2. <50% emittance dilution at injection
- 3. Large Vrf power

I believe that the longitudinal beam dynamics at injection is the problem.

Seconds Trig = EVENT

‡Fermilab

JAIT FOR EVENT done

engineering units

Early Injection Scheme

□ What is spooky about this method

The beam is injected on the deceleration part of the magnetic ramp.

> Beam capture takes place while magnetic field is changing. Historically, it was believed that the capture and acceleration efficiencies in the Booster will be optimal if beam is injected close to $\dot{B} = 0$.

□What is Innovative about this Method?

- > Beam capture should be carried out by imposing $\dot{P} = 0$ even though $\dot{B} \neq 0$.
- > Since the fs \approx 8-27kHz for Vrf=0.034-0.34MV, nearly adiabatic capture of the beam needs only \approx 260 μ s.
- Preserving the longitudinal emittance at capture means less rf voltage through the acceleration cycle Lesser RF power

Beam Simulations with ESME

Inj. @ at \approx -150µs w.r.t. $\dot{B} = 0$ for 40µs. Start beam capture immediately after 10 µs for next 250 µs.

Since we impose $\dot{P}=0$, one demands $\Delta B/B = \gamma_T^2 \Delta f/f$ during beam capture.

RF manipulations are more adiabatic at capture ← ~0% emittance dilution and no beam particle losses

Beam Simulations from Injection → Extraction (Evolution of Phase space Distribution)

Inj. @ at -100 μ s w.r.t. $\dot{B} = 0$, Capture from -64 μ s to 135 μ s, with a phase kick of ~ 6 deg after transition crossing.

Because of small emittance at capture acceleration needs less rf voltage

Fermilab Beam Simulations from Injection \rightarrow Extraction

with 2E10-12E10p/bunch

D Beam injection at 144 μ s earlier than $\dot{B} = 0$.

□ Simulated Vrf curve is used

Transition crossing needed additional tuning

5E12 p/ Booster Batch

Chandra Bhat, Accel. Phys. Forum@ CERN

"Proof of Principle" Experiment

These experiments proved that

- 1) One can inject the beam much earlier than $\dot{B} = 0$.
- 2) Can achieve beam transmission efficiency comparable to the current operation.
- There is ample of room to increase beam intensity in the Booster by a factor more than 1.5.

But we did not have all beam controls during these beam experiments established by simulations.

Fermilab

Tasks under Development

- Beam capture soon after the completion of the beam injection,
- □ A frequency synchronization between the LLRF and changing magnetic field on the down ramp.
- Implement phase corrections/jump at transition crossing.
- □ Fast bunch rotation ← Gives lower beam energy spread at extraction. Hence, is better for slipstacking in RR.
- Beam loading compensation

Implications of EIS

- One can increase the Booster beam power at extraction, because more number of Booster turns can be accommodated
- Higher brightness beam to the downstream machines
- □ Booster can be run with nearly 30% less RF power per cycle ← This is a great bonus.

W. Pellico, C. Drennan, K. Triplett, S. Chaurize, B. Hendrick, T. Sullivan and A. Waller

Expected by adopting Early Injection Scheme

Parameter	PIP		PIP-II (After 2022)
Injection Energy (KE) (GeV)	0.4		0.8
Extraction Energy KE (GeV)	8		8
Injection Intensity (p/pulse)	4.52E12 (x ~1.4)		6.63E12
Extraction Intensity (p/pulse) 4.3E12 (~6E12)		E 12)	6.44E12
Number of Booster Turns	13 (1	8)	300
Efficiency (%)	95 (≥ 9	97)	97
Booster repetition rate (Hz)	15		20
Booster Beam Power at Extraction (kW)	94 (~1	130)	184
MI batches	12 every 1.33 sec		12 every 1.2 sec
NOvA beam power (kW)	700 (~9	950)	1200
Rate availability for other users (Hz)	5		8
Booster flux capability (protons/hr)	~ 2.3E17 (3.2E17)		~ 3.5E17

8/4/2015, Chandra Bhat, DPF2015

Backup

Beam Simulations from Injection \rightarrow Extraction

Parameters	
Booster circumference ($2\pi R$) [m]	473.8
Injection KE [MeV]	400
Extraction KE [MeV]	8000
Cycle Time[sec]	1/15
Beam injection w.r.t. $\dot{B} = 0$ [µsec]	0, -90, -144
Harmonic Number	84
Transition Gamma γ_T	5.478
ΔE at Injection [MeV]	1.6
Longitudinal Emittance [eV sec]	0.04
Beam Structure at Injection	201MHz
Number of BT	1-17
Bunch Intensity [protons/bunch]	2E10-12E10
Beam transverse radius [cm]	1.2*
Beam pipe (RF) radius [cm]	2.86*

*Used in simulations with space charge effects

Fermilab

Laslett SC tune shift

$$\Delta \nu_{SC} = -\frac{N_{tot} r_c B_f}{4\pi \varepsilon_n \beta_p \gamma_p^2},$$

where N_{tot} is total number of particles in the ring, $r_c = 1.53 \cdot 10^{-18}$ m for protons, ε_n is rms normalized emittance, $\beta_p = v_p/c$ and γ_p are usual relativistic parameters, and $B_f \ge 1$ is a peak to average current ratio. Normally, for proton low-energy synchrotrons the tune shift lays in range of -0.1...-0.5 (see, e.g.,[4]). Above the threshold, the beam emittance dilute and particles are lost. Due to the acceleration, the short time at low energy is enough for developing only the lowest order resonances.

Studies with Different Intensities

Beam Emittance

Near Extraction

14BT,dE=+/-0.81MeV@400 MeV,Inj@-35us wrt Bdot=0, M EV(1) VS TIME

RF Voltage

Sept. 15 2015

Chandra Bhat, Accel. Phys. Forum@ CERN