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Abstract

In future circular e+e− colliders, beamstrahlung may
limit the beam lifetime at high energies, and increase the
energy spread and bunch length at low energies. If the dis-
persion or slope of the dispersion is not zero at the collision
point, beamstrahlung will also affect the transverse emit-
tance. In this paper, we first examine the beamstrahlung
properties, and show that for the proposed FCC-ee, the ra-
diation is fairly well modelled by the classical formulae
describing synchrotron radiation in bending magnets. We
then derive a set of equations determining the equilibrium
emittances in the presence of a nonzero dispersion at the
collision point. An example case from FCC-ee will serve
as an illustration.

INTRODUCTION

Energy quantization in synchroton radiation has signif-
icant effects in circular colliders, where energy radiated
from charged particles is emitted as a discrete random pro-
cess. The typical time to emit a photon is of order ρ/(γc),
where ρ denotes the radius of curvature of a particle tra-
jectory, c the speed of light, and γ the relativistic Lorentz
factor. Compared to the betatron and synchroton periods,
we can consider the emission time as instantaneous.

In most electron storage rings, the equilibrium transverse
emittances, energy spread and bunch length are determined
by a balance of quantum excitation and radiation damping,
both occuring in the accelerator bending magnets [1].

A different type of synchrotron radiation, known as
beamstrahlung [2, 3, 4, 5, 6], is encountered during the
collision with the opposite beam. For short bunch lengths
and small transverse beam sizes, the effective bending ra-
dius due to the field of the opposing bunch is exceptionally
small, and at high energies the classical critical photon en-
ergy can become significant. In proposed linear colliders it
may even reach the same order of magnitude as the beam
energy [6]. In such situations a fully quantum-mechanical
description of the synchrotron radiation process could be
warranted.

If the energy of an emitted photon is a few percent of
its intial energy, the emitting particle may fall outside of
the momentum acceptance and be lost. The resulting re-
duction of the beam lifetime due to the high-energy tail
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of the beamstrahlung sets a limit on the quantity Aτ ≡
Nbγ/(ησxσx) [7, 8], where Nb denotes the bunch charge,
σx the rms hortizontal beam size at the collision point, σz

the rms bunch length, and η the relative momentum accep-
tance of the storage ring. A necessary condition for an ac-
cepable beam lifetime is Aτ > 1028 m−2.

The cumulative effect of statistically independent dis-
continuous energy changes, introduces a noise excitation
of the longitudinal and transverse oscillations, causing their
amplitudes to grow until balanced, on average, by the radi-
ation damping. This damping depends only on the aver-
age rate of emission of energy and not on any of its other
statistical properties, whereas the excitation is due to the
fluctuation of the radiation about its average rate.

BEAMSTRAHLUNG

The strength of synchrotron radiation is characterized
by the parameter Υ, defined as [5, 6] Υ ≡ B/Bc =
(2/3)h̄ωc/Ee, with Bc = m2

ec
2/(eh̄) ≈ 4.4 GT the

Schwinger critical field, ωc the critical energy as defined
by Sands [1], and Ee the electron energy before radiation.

For the collision of 3-dimensional Gaussian bunches
with rms sizes σx, σy and σz the peak and average values
of Υ are given by [6]

Υmax = 2
r2eγNb

ασz(σ∗
x + σ∗

y)
, (1)

Υave ≈ 5

6

r2eγNb

ασz(σ∗
x + σ∗

y)
, (2)

where α denotes the fine structure constant (α ≈ 1/137),
and re ≈ 2.8× 10−15 m the classical electron radius.

Introducing y ≡ ω/Ee and

ξ ≡ 2ω

3Υ(E − h̄ω)
, (3)

the emission rate spectrum (photons emitted per second per
energy interval) is described by the functions [6],
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which in the classical regime (Υ → 0) reduces to the well
known expression [1]
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The number of photons radiated per unit time is obtained
by integrating over ω:

dNγ

dt
=

∫ Ee/h̄

0

dWγ

dω
dω . (6)

The number of photons emitted during a single collision
can be obtained by integrating (6) in time and averaging
over the bunch distribution, taking into account the vari-
ation of Υ. The result for head-on collision of Gaussian
bunches is given in Ref. [6].

For all proposed high-energy circular colliders, Υ is
much smaller than 1 (also see Table 1), and σx � σy . In
this case we can approximate the average number of pho-
tons per collision as [6]

nγ ≈ 12
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and the average relative energy loss as
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(8)
The average photon energy normalized to the beam en-

ergy, < u >, is given by the ratio of δB and nγ :

〈u〉 = δB
nγ

≈ 2
√
3

9

r2eNbγ

ασzσx
. (9)

In the classical regime, the average squared photon en-
ergy is related to the average photon energy via [1]

〈u2〉 ≈ 25× 11

64
〈u〉2 . (10)

Noting that 〈u〉 ∝ ∫ Ee

0 ω(dWγ/dω)dω and 〈u2〉 ∝∫ Ee

0 ω2(dWγ/dω)dω, we can use the general photon dis-
tributions (4) to check the applicability of this relation as
a function of Υ. The validity of (10) up to Υ ∼ 10−3 is
illustrated in Fig. 1.

Figure 1: Mean square photon energy normalized by the
square of the mean energy according to (10) versus Υ.

In the following we will need the excitation term {nγ <
u2 >} for a single collision. According to (7) and (10), for
small Υ this can be written as

nγ〈u2〉 ≈ 1.4
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ENERGY LOSS AND DAMPING TIME
Using (8), and introducing the number of collision (in-

teraction) points, nIP, the average energy loss due to beam-
strahlung per turn is given by

U0,BS = nIPδBEe ≈ 0.84
nIPr

3
eEeγN

2
b

σz(σx + σy)2
(12)

The longitudinal damping time in the presence of beam-
strahlung is

τE,tot =
TrevEbeam

U0,SR + nIPU0,BS
≈ τE,SR

(
1− nIP

U0,BS

U0,SR

)
,

(13)
where Trev denotes the revolution period, Ebeam the beam
energy, U0,SR the average energy loss per turn due to syn-
chrotron radiation in the arc, and U0,BS the average energy
loss due to beamstrahlung in one collision.

For all the proposed future circular colliders we have
U0,BS � U0,SR, τE,tot ≈ τE,SR, and also σx � σy . In the
following we will assume these conditions to be fulfilled.

SELF-CONSISTENT ENERGY SPREAD
The energy spread increases due to the additional excita-

tion from beamstrahlung at the collision point as

σ2
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where

σ2
δ,BS =

nIPτE,SR

4Trev
nγ〈u2〉 (15)

≈ 1.4
nIPτE,SR

4Trev

r5eN
3
b γ

2

ασ2
zσ

3
x

(16)

scales as 1/(σ3
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and using the relation σz,tot = σδ,totσz,SR/σδ,SR, self-
consistency requires [10]

σ2
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)2
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where the subindex “SR” refers to the bunch length or en-
ergy spread computed with arc synchrotron radiation only.
The explicit solution for the total energy spread is [10]
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2
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(19)
Solving (19) for the FCC-ee example parameters listed

in Table 1, we obtain the shown values of σz,tot and σδ,tot.



Table 1: Example beam parameters for FCC-ee crab-waist
(CW) collisions with a full crossing angle θc = 30 mrad
at the Z pole and at the WW threshold [11], as well as for
possible operation on the Higgs resonance (62.5 GeV) in
simple head-on (h.-o.) collision, and standard or pushed
optimized monochromatization (m.-c.) [12], always con-
sidering nIP = 2 identical IPs.

energy [GeV] 45.6 62.5 62.5 62.5 80
scheme CW h.-o. m.-c. m.-c. CW
θc [mrad] 30 0 0 0 30
circ. C [km] 100 100 100 100 100
αC [10−6] 7 7 7 7 7
frf [MHz] 400 400 400 400 400
Vrf [GV] 0.2 0.4 0.4 0.4 0.8
U0,SR [GeV] 0.03 0.12 0.12 0.12 0.33
U0,BS [MeV] 0.5 0.05 0.01 0.01 0.21
τE/Trev 1320 509 509 509 243
Qs 0.025 0.030 0.030 0.030 0.037
Nb [1010] 3.3 0.7 3.3 8.5 6.0
β∗
x [m] 1 1 1 0.25 1

β∗
y [mm] 2 2 2 1 2

D∗
x [mm] 0 0 0.22 0.11 0

εx,SR [nm] 0.09 0.17 0.17 0.17 0.26
εx,tot [nm] 0.09 0.17 0.21 4.16 0.26
εy,SR [pm] 1 1 1 1 1
σx,SR [μm] 9.5 9.2 132 66 16
σx,tot [μm] 9.5 9.2 144 323 16
σy [nm] 45 45 45 32 45
σz,SR [mm] 1.6 1.8 1.8 1.8 2.0
σz,tot [mm] 3.8 1.8 1.8 1.8 3.1
σδ,SR [%] 0.04 0.06 0.06 0.06 0.07
σδ,tot [%] 0.09 0.06 0.06 0.06 0.10
Υmax [10−4] 1.7 0.8 0.3 0.4 4.0
Υave [10−4] 0.7 0.3 0.1 0.2 1.7

SELF-CONSISTENT EMITTANCE
Non-zero dispersion at the interaction point (IP) may

arise either due to optics errors or by design, e.g., for a
monochromatization scheme [12]. In the presence of such
IP dispersion, not only the energy spread increases due to
the beamstrahlung, but also the transverse emittance. The
dynamics is similar to the well-known effect of horizon-
tal dispersion and conventional synchrotron radiation in the
storage ring arcs.

We can formulate a set of equations for the longitu-
dinal and transverse plane, which must be solved self-
consistently for two unknowns: σx and σz .

The bunch length is related to the energy spread via [1]

σz,tot =
αCC

2πQs
σδ,tot , (20)

where C denotes the circumference, Qs the synchrotron
tune, and αC the momentum compaction factor.

In the presence of a nonzero horizontal dispersion at the
IP, the dispersion invariant [1],

H∗
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β∗
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xD
∗
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+D∗

x
2
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x

, (21)

is nonzero, where β∗
x, α∗

x, D∗
x and D′

x
∗ denote optical beta

and alpha function (Twiss parameters), the dispersion and
slope of the dispersion at hte collision point, respectively.
In this case the total emittance becomes

εx,tot = εx,SR +
τxnIP

4Trev
{nγ < u2 >}H∗

x (22)

where τx denotes the horizontal (amplitude) damping time
due to synchrotron radiation, and the relative momentum
spread

σ2
δ,tot = σ2

δ,SR +
nIPτE,SR

4Trev
{nγ < u2 >} . (23)

These equations are coupled through the excitation term.
Different simplified solutions can be obtained depending
on whether D∗

xσδ,tot �
√
β∗
xεx, or D∗

xσδ,tot �
√
β∗
xεx.

For example, assuming D∗
xσδ,tot � √

β∗
xεx, (e.g. case

of monochromatization), τx = 2τE , and using (11)
Eqs. (22) and (23) can be rewritten as

εx,tot ≈ εx,SR +
2BH∗

x
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with

B ≡ 48
nIPτE,SR

Trev
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3
b γ

2

(αCC/(2πQs))2
. (26)

After solving Eq. (25) for the relative energy spread σδ,tot,
the emittance follows from Eq. (24). Using Eqs. (25) and
(24) we obtain the total bunch length and emittance for the
two cases of D∗

x 
= 0 (the second and third column) at
62.5 GeV in Table 1. A large horizontal emittance blow
up due to beamstrahlung occurs for the “pushed optimized”
monochromatization.

For the opposite case, D∗
xσδ,tot �

√
β∗
xεx, we find

εx,tot ≈ εx,SR +
2BH∗

x

σ2
δ,totβ

∗
x
3/2ε

3/2
x,tot

(27)

σ2
δ,tot = σ2

δ,SR +
B

σ2
δ,totβ

∗
x
3/2ε

3/2
x,tot

. (28)

The two equations (28) and (27) are coupled, and must
be solved together. Equations (25) and (24) then yield the
total bunch length and emittance shown in Table 1 for the
three columns with D∗

x = 0.
The bunch length always follows from the relation (20).
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