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The origin of non-linear dynamics traces back to the study of the dynamics of planets with the
seminal work of Poincaré at the end of the 19

th century: “Les Méthodes Nouvelles de la Mécanique
Céleste”, Vols. 1-3 (Gauthier Villars, Paris) (1899). In his work he introduced a methodology fruitful
to investigate the dynamical properties of complex systems which led to the so called “Poincaré
surface of section”, which allows to capture the global dynamical properties of a system, characterized
by fix-points and separatrix as far as it concerns regular and chaotic motion. For two dimensional
phase space (1 degree of freedom) this approach has been extremely useful and applied to particle
accelerators for controlling their beam dynamics as of the second half of the 20

th century. We
describe here an extension of the concept of 1D fix-points to fix-lines in 2D. These structures become
the fundamental entities for characterizing the non-linear motion in the four dimensional phase space
(2 degrees of freedom).

PACS numbers: 41.75.-i, 29.27.Bd

For experimental physicists, accelerators are devices
to provide particle beams to a detector, or to bring two
beams to collision to study fundamental properties of
matter at subatomic level. It is less known that parti-
cles in a circular accelerator are subject to violent and
complex dynamics, which in many aspects resemble and
even exceed the complexity of the dynamics of planet
motion around the sun. In accelerators, magnet non-
linearities are responsible for the non-linear dynamics in
1, 2 and even 3 degrees of freedom. The characterization
of the nonlinear motion is usually expressed in terms of
the stability properties and trajectory deformation. Ac-
celerator physicists have become familiar with properties
such as dynamic aperture, fix-points, island and sepa-
ratrix structures, as the requirement of controlling the
beam dynamics. This has led to the development of the
non-linear dynamics “for accelerators” [1–4]. Particle mo-
tion can either be regular or chaotic, the latter leading to
particle loss. The characterization of the regular motion
and the onset of chaotic motion are therefore of utmost
importance for particle accelerators [1, 2].

In absence of non-linearities the horizontal linear mo-
tion is governed by a harmonic oscillator equation of mo-
tion x′′ + kx(s)x = 0, where kx(s) is the strength of the
linear focusing/defocusing elements in the accelerator, re-
sulting in the linear horizontal tune (phase advance per

turn), Qx = 1/(2π)
∫ L

0
βx(s)

−1ds, with βx(s) the well
known horizontal beta function incorporating the focus-
ing system kx(s), and L the length of the circular ac-
celerator [5]. The particle trajectories in the 2D phase
space are lines around a closed-orbit which typically is
located at zero amplitude. In the Poincaré surface of
section [6] (any fixed longitudinal location s) one finds
ellipses around the closed-orbit.

The introduction of non-linearities disturb this simple
and elegant structure. The motion of a particle is gov-
erned by the non-linear equation x′′ + kx(s)x = kn(s)x

n,
with kn(s) the strength of the non-linearity of order n.

The topology of the orbits in the Poincaré surface of
section is determined by the tune Qx, which is now de-
fined as the averaged phase advance per turn. For Qx

close to the resonance nQx = m the topology of the or-
bits changes and some of the Courant-Snyder ellipses are
broken into higher order closed-orbits at non-zero ampli-
tudes (fix-points) and the particle motion in its vicinity
is restricted to islands around the fix-points. Lastly, at
some distance to these fix-points a separatrix is reached
that separates the island motion from the nominal mo-
tion around the closed-orbit at zero amplitude. It is in-
teresting to note that chaotic motion develops around
the separatrix due unavoidable additional resonances as
originally described by Poincaré in 1899 [6].

The Poincaré surface of section method allows a visual
representation of the dynamics of a particle, which is use-
ful for describing the motion. The control of the islands
and separatrix is even used for operational schemes like
the slow resonance extraction [7].

The importance of the nonlinear dynamics in acceler-
ators has recently been emphasized with the advent of
new accelerator projects [8, 9], which have turned the fo-
cus on machines, where properties vary with time. The
phenomenon of 1D resonance crossing for high intensity
beams has been explained in terms of trapping and scat-
tering of a particle interacting with islands, and extensive
experimental and numerical studies have characterized
the case of 1D dynamics [10, 11].

The reduction of the dynamics to one degree of free-
dom allows a visual representation of the main feature of
the dynamics in terms of islands and fix-points. However,
the dynamics in accelerators is actually determined in 2
and 3 degrees of freedom and the resonances excited by
non-linear components in an accelerator are found for the
horizontal and vertical tunes Qx, Qy satisfying the rela-
tion nxQx+nyQy = N . A theory describing the dynam-
ics of a particle in the 2D has been developed in the 1950s
by Schoch [4]. This theory describes how the strength of
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magnet non-linearities is related to the resonant behavior
of a particle: for non-linear field components distributed
around the circular accelerator, the main properties of
a resonance can be related to a quantity called “driving
term”. The theory predicts the resonance stop-band as
a function of the driving term. Despite this enormous
progress it remains un-explained how resonance struc-
tures in two or more degrees of freedom actually govern
the phase space. The purpose of this letter is to shed
some new light onto this issue.

The discussion of the dynamics in terms of islands
and fix-points is now more difficult, the Poincaré sur-
face of section is a 4D phase space and no longer easily
understandable. One can try to predict the beam evo-
lution via computer simulations to circumvent the com-
plicate theoretical analysis. In fact, the actual devel-
opment of the treatment of the non-linear dynamics in
accelerators is quite mature [12], and the present level of
computer power allows demanding numerical investiga-
tion. However, the increase of computer power does not
help in understanding what really happens in the multi-
dimensional phase space if we do not know what to look
for in the complex dynamics unless guided by a deeper
theoretical understanding of these complexities.

In the following an approach is presented on how to
characterize the dynamics in the proximity of a coupled
2D resonance in a rigorous analytic way. The technical
details of this approach will be discussed in an upcoming
article [13].

The simplest situation of coupled non-linear dynamics
is found when considering a circular accelerator affected
by a sequence of thin sextupoles. In this case the equa-
tions of motion read

d2x

ds2
+ kx(s)x = −1

2
k2(s)(x

2 − y2),

d2y

ds2
+ ky(s)y = k2(s)xy.

(1)

The solution of this equation can be written as

x(s) =
√

βxax cos[φx(s) + ϕx],

y(s) =
√

βyay cos[φy(s) + ϕy],
(2)

where βx, βy are the well known horizontal and verti-
cal beta functions, and the phase advances are φx(s) =
∫ s

0
βx(s)

−1ds, φy(s) =
∫ s

0
βy(s)

−1ds. The function
k2(s) describes the local strength of the non-linear er-
rors, which excite the resonance Qx + 2Qy = N , with N
the harmonics of the distribution of the errors.

The quantities ax, ay, ϕx, ϕy are the constants of lin-
ear motion. However, if we consider the system de-
scribed by Eq.(1), and search for solutions of the form
of Eq.(2), then ax, ay, ϕx, ϕy are forced to become time
dependent. The evolution of these “new” variables is gov-
erned by an Hamiltonian composed by a large number of
harmonics, each of which has frequencies obtained as a
combination of the tunes Qx, Qy. This is the hamilto-
nian of the nonlinear terms in Eq. (1). The situation is
hopelessly complex for an analytic treatment when all

these harmonics should be included into the equations
of motion. However, for a machine set close to the res-
onance Qx + 2Qy = N , the harmonics with frequency
Qx + 2Qy − N become very slow. As a result only two
slow varying harmonics remain while the others “aver-
age out” fast and are ignored. This approximation is
valid close to the resonance, and for reasonable small
non-linear errors. We then take the truncated Hamil-
tonian (slowly varying) as an approximation of the real
Hamiltonian when the system is in proximity to a third
order 2D coupled resonance. The same procedure is used
in Refs. [4, 14]. In our study we find that Nj sextupolar
errors lead to the slowly varying Hamiltonian:

Hs1 = Λ
√

axay cos

(

α+ 2π∆r

s

L
+ ϕx + 2ϕy

)

, (3)

with ∆r = Qx + 2Qy −N defined as the distance of the
tunes Qx, Qy to the resonance. Here Λ is the driving term
of the resonance, and α is its orientation in the complex
plane. Both these factors incorporate the effect of the
distributed sextupolar errors of integrated strength K2j

located at the position sj . The quantity Λ, and the angle
α determine the dynamics in this approximation.

The dynamics of the variables ax, ay, ϕx, ϕy, is given by
the canonical equations of the Hamiltonian 2Hs1, where
Hs1 is the slowly varying Hamiltonian Eq.(3), which is
time dependent, and a procedure to remove the time de-
pendency is desirable in order to identify invariants of
motion.

Differently from previous works, we find that there is
an infinite set of canonical transformations of the from

ãx = ax, ϕ̃x = ϕx + tx2π∆rs/L,

ãy = ay, ϕ̃y = ϕy + ty2π∆rs/L,
(4)

all suitable for creating a system of canonical coordi-
nates ãx, ϕ̃x, ãy, ϕ̃y where the Hamiltonian Eq.(3) be-
comes time independent. The coefficients tx, ty shall here
satisfy the condition tx+2ty = 1. Therefore, by assigning
a value to tx = τ we completely fix one possible system
of canonical coordinates.

In the system τ , the new coordinates are subjected
to the dynamics of a time-independent Hamiltonian via
the canonical equations. The simplest solution of the
canonical equations ã′x = ϕ̃′

x = ã′y = ϕ̃′

y = 0 is found to
be

ãy =
(2π∆r)

2

4Λ2L2
τ(1 − τ),

ãx =
(2π∆r)

2

16Λ2L2
(1− τ)2,

ϕ̃x + 2ϕ̃y + α = πM,

(5)

with M an integer of either 0 or 1. The values of τ are
limited to 0 ≤ τ ≤ 1.

Any one of these solutions ãx, ϕ̃x, ãy, ϕ̃y can be trans-
formed to the laboratory frame via Eqs.(4, 2) at a specific
longitudinal position along the accelerator. To simplify
the discussion, but without losing generality, we take the
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x − y projection of the Poincaré surface of section and
find that the particle coordinates lie on the curve

x(t) =
√

βxax cos(−2t+ πM),

y(t) =
√

βyay cos(t),
(6)

where t is a variable that parameterizes the curve. We
find that after each accelerator turn an initial point
(x, x′, y, y′)0, identified by ãx, ãy, ϕ̃x, ϕ̃y and satisfying
Eq.(5), is mapped to another point (x, x′, y, y′)1 and all
such points belong to a closed one dimensional curve,
which in the x − y projection has the analytic form of
Eq.(6). At the same time (x, x′, y, y′)1 in the system τ
keep unchanged the value of the variables ãx, ãy, ϕ̃x, ϕ̃y.
Similar result can be found in any projection of Poincaré
surface of section.

We call this curve a 2D “fix-line” [15] based on its
property that the particle coordinates will remain on this
curve indefinitely. In analogy to 1D fix-points, we find
that 2D fix-lines can be either stable or unstable. Fig.(1)
shows an example of several projections of a Poincaré
surface of section of a stable 2D fix-line. For convenience
we show the classical horizontal and vertical projections
x − x′, y − y′ in part a), and b), which describe circles
guaranteeing that ãx, ãy are constant. Part c) shows the
x− y projection, part d) shows the x′ − y′ projection.
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Figure 1: The 2D fix-line as predicted by the theory (red dots)
and position of a particle from simulations (black markers).
The circular shape in Part a), b) shows that ãx, ãy are con-
stants of the motion.

We have therefore reached the situation where in each
system τ there is one stationary point that in the lab-
oratory frame becomes a distinct fix-line. Therefore we
can conclude that the 4D phase space is populated by

an infinite set of fix-lines dependent on the parameter τ .
These lines are all close to one another so as to form a
complex structure in the 4D phase space.

It is an interesting feature of the canonical equations
in the system τ that they lead to the invariant of motion
2ãx− ãy = C. If we consider the same particle in another
system τ ′, the value of C, ãx, and ãy remain the same.
This is due to the fact that the parameter τ does not play
a physical role, while the variables ãx, ãy have a physical
meaning of particle emittance (or action). This is not
the case for the variables ϕ̃x, ϕ̃y, which depend on τ . As
the physics should not be dependent on τ , we combine
ϕ̃x, ϕ̃y to eliminate tx, ty by taking Ω = ϕ̃x + 2ϕ̃y: Ω
has the same value in any system τ (see Eq.(4)). This
means that the variables ãx,Ω are more convenient to
characterize the dynamics as they are independent of τ .
Re-expressing the time independent Hamiltonian of any
system τ into these variables we find a function neither
dependent on time nor on τ , i.e. an invariant of motion
I(ax,Ω). In the laboratory frame we can re-cast it in
conveniently “scaled” coordinates as:

Î(âx,Ω) = µ
√

âx(âx − ξ) cos(Ω + α) + âx, (7)

with âx = [4LΛ/(2π∆r)]
2ax, ây = [4LΛ/(2π∆r)]

2ay,
ξ = [4LΛ/(2π∆r)]

2C/2, and µ = ∆r/|∆r|. Given the

initial coordinates of a particle, we fix Î , ξ, hence the as-
sociated level line of Eq.(7) yields the particle trajectory
in âx,Ω coordinates. This allows to predict the stability
of all particles according to the value of the two invariants
Î , ξ. An analysis of the stability of motion using Eq.(7)
reveals that the edge of stability of particles is consistent
with the position of the fix-lines. This is shown in part
a) of Fig.(2) where the set of the fix-lines described by
Eq.(5) forms a parabolic-like curve (color blue, and pink)
in the (âx, ây) plane. If a particle has initial values âx, ây
“inside” the set of the fix-lines, its stability depends on
the value of Ω. The pink line is the collection of âx, ây
with unstable fix-lines, and the blue line is the collection
of the values âx, ây with stable fix-lines. The color code
in the pictures provides the set of allowed Ω as function
of âx, ây. This range is determined by the level line asso-

ciated with the invariant Î of a fix-line according to the
following procedure: given a particle with certain âx, ây
values we find ξ = âx − ây/2, which identify a line that
always intercept the pink line collection of the unsta-
ble fix-lines. To that interception point corresponds one
value of τ , and one value Îfl of the invariant Eq.(7). The
angles Ω for which the motion of a particle with initial
ax, ay is stable are found in an interval of size 2∆Ω, with

∆Ω(âx, ây) = arcos

[

1

µ

Îfl − âx√
âx(âx − ξ)

]

, (8)

where we take 0 ≤ ∆Ω ≤ π. Part a) of Fig.(2) shows
a red wide region where ∆Ω = π, there Ω can assume
any values and the particle remain stable; other regions
of the picture exhibit partial stability.
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Figure 2: Complete stability domain. Part a): the stability
domain as obtained by the analytic theory for the SIS18 lat-
tice with a distribution of sextupolar errors. Part b) shows
the stability domain of SIS18 obtained with simulations for
one single sextupolar kick.

Part b) of Fig.(2) shows a comparison with computer
simulation for the case with one single sextupolar error.

The widening of the stability domain shown in part b) of
Fig.(2) is due to the effect of higher harmonics, which are
all excited by a single localized error. Further simulations
show that distributed errors generated to mainly excite
a single harmonic component yields a better agreement
between theory and simulations.

Fig.(2) shows another interesting feature: particles
close to the ây axis can be stable even “outside” the bor-
der of the stable 2D fix-lines. This demonstrate the ex-
istence of stable 2D “tori” as an analogon to the stable
“islands” in 1D dynamics. Contrary to the 1D case these
stable tori exist even without stabilizing detuning terms
from higher order multipolar components.

In conclusion, in proximity to the coupled 2D reso-
nance Qx + 2Qy = N there are 2D fix-lines that are
equivalent to fix-points in 1D. These lines are one di-
mensional closed curves in the 4D phase space. Their
number is infinite, and they may either be stable or un-
stable. Our analysis is focused on distributions of sex-
tupolar errors around a circular machine and should be
seen as a general extension of previous studies [16, 17].
Our study links the stability domain to the existence of
fix-lines. We also find that the properties of stability de-
fine a scaling law, naturally associated to the scaling co-
efficient [4LΛ/(2π∆r)]

2. The general properties are sum-
marized in Fig.(2) expressed in scaled emittances. The
full derivation of this theory will be part of a future pub-
lication [13].

This study constitutes a milestone for the studies with
space charge and the process of 2D fix-line crossing and
trapping phenomena in 2D induced by space charge and
in conjunction with synchrotron oscillation.
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